首页> 外文OA文献 >Predicting the secondary structure of proteins using Machine Learning algorithms
【2h】

Predicting the secondary structure of proteins using Machine Learning algorithms

机译:使用机器学习算法预测蛋白质的二级结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The functions of proteins in living organisms are related to their 3-D structure, which is known to be ultimately determined by their linear sequence of amino acids that together form these macromolecules. It is, therefore, of great importance to be able to understand and predict how the protein 3D-structure arises from a particular linear sequence of amino acids. In this paper we report the application of Machine Learning methods to predict, with high values of accuracy, the secondary structure of proteins, namely alpha-helices and beta-sheets, which are intermediate levels of the local structure.
机译:蛋白质在活生物体中的功能与其3D结构有关,已知该3D结构最终由它们共同形成这些大分子的氨基酸线性序列决定。因此,至关重要的是能够理解和预测蛋白质3D结构如何从特定的线性氨基酸序列中产生。在本文中,我们报告了机器学习方法的应用,以较高的准确性值预测蛋白质的二级结构,即α-螺旋和β-折叠,它们是局部结构的中间水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号